WS27: Unleash the power of GRASS GIS 7

Session 4 – GRASS GIS 7 raster intro

Markus Neteler – mundialis GmbH & Co KG, Germany Luca Delucchi – Fondazione Edmund Mach, Italy Martin Landa – Czech Technical University, Prague

FOSS4G 2016, Bonn http://foss4g2016.org/ws27.html

Contains modified Copernicus Sentinel data [2016]/ESA/In

Session Objectives

- GRASS GIS raster processing concepts
- Import of a GeoTIFF (DEM)
- Applying a color table to the DEM
- Raster: NULL values and MASK
- Working with the computational region
- Region and raster map import/export
- Raster map export
- Simple hydrological modelling
- Raster capabilities in GRASS GIS

Raster intro

computational region concept raster import / export via GDAL

Computational region

defined by region extent and raster resolution applies to raster operations

Raster map region

defined by map extents and map resolution each raster map has its own values computational region overrides raster region

Display region

extents of the current map display

independent of the current computational region and the raster region

user can set the current computational region from display region

Exercise – Import of a GeoTIFF (DEM)

Since GRASS handles data in its own format, GIS files need to be imported (r.in.gdal) or just registered (r.external):

4	<u>}</u>		_	GRASS G	IS Layer M	anager		_	- 🗆 ×	\$			_	GRAS S	GIS M
	File	Settings	Raster	Vector	Imagery	Volumes	Data	abase	Help			8	R		¢
	W M	/orkspace 1ap display					•			:					.4. 4
	lr	nport raste	er data				\rightarrow	Co	mmon impo	rt form	ats [r.in.go	dal]		
Ľ	Import vector data							ASCII X.V.Z point import and gridding [r.							21
L	Import 3D raster data Import database table							AS	ASCII grid import [r.in.ascii]						
								AS	ASCII polygons and lines import [r.in						
	Export raster map						•	Binary file import [rin bin]							

http://data.neteler.org/geostat2015/north_carolina/elev_ncstate_500m_tif.zip

elev_ncstate_500m.tif

After import, activate the map in the map tree to display it

	Import raster	data	- 🗆 ×					
Settings Load setting	is:	+	📥 Save					
Source type O File 💿 Di								
Source name								
Directory:	/home/neteler/disstext/conferences	Browse						
Format:	GeoTIFF	+						
List of GDAL layers								
Layer La	ayer name	Name for GRASS map						
⊘ l ek	ev_state_500m.tif	elev_state_500m						
Allow outp	out files to overwrite existing files							
☑ Add impo	rted layers into layer tree							
	Command dialog	port Cancel						

Exercise – Applying a color table to DEM

NULL values: no value – e.g. gaps in DEM

MASK (i.e., a raster map with this name, capital letters):

MASK'ed cells are read as NULL cells -> usually skipped (also all areas outside the computation region)

Exercise – Working with MASKs

Load the "zipcodes" raster map into the Layer Manager and display it. Set the computational region to the map (via right mouse button) or with

```
g.region raster=zipcodes -p
```

Now we want to pick only one ZIP code and restrict subsequent calculations to only that part.

- List raster attributes (or use query tool on map): r.category zipcodes
- Set the MASK (here: from raster map, also vector maps are supported):

```
r.mask raster=zipcodes maskcats=27605
```

 Now display the map again ("Render map" icon) to see only that particular area of the "zipcodes" map

Note: the computational region is not updated by that.

```
MASK removal: r.mask -r
```

Exercise – Working with the region

Print values of computational region (valid for the active MAPSET) command: g.region -p

wxGUI: Settings -> Region -> Set region

	- 🗆 ×							
\bigotimes Manages the boundary definitions for the geographic region.								
Existing Bounds Resolution Effects Print Optional	4 🕨 🗙							
Print the current region	(p)							
Print the current region in lat/long using the current ellipsoid/datum	(1)							
Print the current region extent	(e)							
Print the current region map center coordinates	(c)							
Print the current region in GMT style	(t)							
Print the current region in WMS style	(w)							
 Print region resolution in meters (geodesic) 	(m)							
Print the convergence angle (degrees CCW)	(n)							
Print also 3D settings	(3)							
Print the maximum bounding box in lat/long on WGS84	(b)							
Print in shell script style	(g)							
Close Run Copy 💿 Help								
Close dialog on hit Kun the command (Ctri+R)								
g.region -p								

Indeed, command line:

Import of raster maps

r.in.* modules r.import (it also offers reprojection on the fly)!

Always the full maps are imported.

Export of raster maps

r.out.* modules

!! Raster export adheres to computational region
 (and respects also a MASK if present)

r.out.gdal for export

GDAL supports > 140 raster formats.

Raster export via GDAL

command: r.out.gdal

wxGUI: File -> Export raster map -> Common export formats

Exercise:

Set region to some raster map

> g.region -p raster=<raster>

export this raster with r.out.gdal

> r.out.gdal input=<raster> output=<raster>.tif

Now display this raster map, zoom in, set region from display (icon)

export again with r.out.gdal

compare size of the two exported raster maps compare output of gdalinfo

Note: White space in path needs quoting with "C:\PATH TO\..."

Flow accumulation with Multiple Flow Direction:

set computational region to map (using map metadata)
g.region raster=elev_lid792_1m -p

flow accumulation with MFD
r.watershed elevation=elev_lid792_1m accumulation=flowacc

```
# check map list
g.list raster
```

show metadata
r.info flowacc

```
# now look at map in
# map display
```


Exercise – Hydrological analysis: reality check

Helena Mitasova, NCSU (source: author, citation: http://www4.ncsu.edu/~lgtateos/download/tvcg.10.pdf)

Exercise – Hydrological modelling

Perspective view of flow accumulation:

Create a nice perspective view

- Load and highlight the "elev_lid792_1m" raster map in the layer manager
- In the map display, switch to "3D view" in the upper right corner
- In wxNVIZ's "Data" tab, load "flowacc" as "Surface attrib./Color"
- Increase the shown map resolution in "Fine mode": reduce the value

Example raster module groups

- resampling
- Reprojection/georectification
- map calculator
- Terrain analysis
- Hydrologic modeling
- **Reports and statistics**

Raster maps: DEMs, land cover, climatic maps ...

Imagery maps: Landsat, MODIS, SPOT, QuickBird ...

Raster data analysis: further methods

- Additional DEM analysis modules:
 - depression areas can be filled with **r.fill.dir**
 - flowlines can be calculated with **r.flow**
 - trace a flow through a DEM: r.drain
 - watershed analysis can be done with **r.watershed** and **r.terraflow**
 - cost surfaces: **r.cost, r.walk**
- Energy:
 - cast shadows, astronomical calculations of sun position: **r.sunmask**
 - energy budget: **r.sun**
- Line of sight:
 - viewsheds can be generated with: r.viewshed
- Interpolation methods
 - 2D inverse distance weighted: **v.surf.idw**
 - 2D from contour lines: r.surf.contour
 - 2D bilinear: r.resamp.interp
 - 2D regularized splines with tension (with cross validation): v.surf.rst
 - 3D regularized splines with tension (with cross validation): **v.vol.rst**
 - 2D/3D kernel densities: v.kernel
 - ... and much more!