WS27: Unleash the power of GRASS GIS 7

Session 5 – GRASS GIS 7 vector intro

Markus Neteler – mundialis GmbH & Co KG, Germany
Luca Delucchi – Fondazione Edmund Mach, Italy
Martin Landa – Czech Technical University, Prague

FOSS4G 2016, Bonn
http://foss4g2016.org/ws27.html
Session Objectives

- Why a topological vector data model
- Topological vector data model in GRASS GIS 7
- Vector feature extraction
- Vector geometry dissolving
- Geometry editing/digitizing
- Import/export
- Capabilities of GRASS GIS' vector engine
What is vector topology?

Non-topological vector formats:
E.g. OGC Simple Features, ESRI shapefiles
Geometry types: points, lines, polygons
→ Problem: replicated boundaries for adjacent areas

Faster computations, but extra work for maintenance

Non-topological polygon map being generalized
What is vector topology?

True topological vector format:

- Areas are constructed from boundaries
- Boundaries are shared between adjacent areas

Slower computations, but less (nearly no manual) maintenance

Topological

polygon map being generalized
GRASS GIS 7 Vector features

Native vector format

- Vector topology
- m:n mapping of geometry features to attributes
- Support of vector layers
- OGC Simple Features ↔ Topological Vector Conversion
- Database Management system (DBMS) with SQL support
- SQLite (default DB backend), PostgreSQL + PostGIS, MySQL, ODBC (, DBF)
GRASS GIS Vector model

Vector geometry types

- Point
- Centroid
- Line
- Boundary
- Area (Boundaries + Centroid)
- Face (3D Area)
- [Kernel (3D Centroid)]
- [Volumes (Faces + Kernel)]

All types are **true 3D**: x, y, z
Basic geometry types, they can be edited *directly*:

- Point
- Centroid
- Line
- Boundary

A GRASS vector map can contain a combination of several different types
Types 1: Basic vector geometry types

- **Point**
- **Line**
- **Centroid**
- **Boundary**

Green: topologically correct
Types 2: Derived vector geometry types

Derived geometry types, constructed from basic types

- **Area** (closed ring of boundaries + centroid)
- **Isle** (closed ring of boundaries, no centroid)
- **Node** (at both ends of lines/boundaries)

Isles and Nodes are not visible to the user
Exercise: Vector feature extraction

Extract by attributes

GRASS GIS module:

```v.extract```

Input: boundary_county
Output: boundary_wake

Command:

```
v.extract input=boundary_county \ output=boundary_wake \ where="NAME = 'WAKE'"
```
Vector feature select operations: v.select (GEOS)

- OVERLAPS
- TOUCHES
- WITHIN
- DISJOINT
- CONTAINS with polygon
- CONTAINS with points
- INTERSECTS
- EQUALS
- CROSSES with lines
Exercise: Vector feature extraction

Extract with another vector

*GRASS GIS module:*

```
v.select
```

Input: boundary_wake, railroads
Output: railroads_wake

**Command:**

```
v.select ain=railroads bin=boundary_wake
 out=railroads_wake
 atype=line btype=area
 operator=overlap
```
Exercise: Vector feature extraction

Extract with another vector (clipping)

GRASS GIS module:

v.overlay

Input: boundary_wake, railroads
Output: railroads_wake_clip

Command:

v.overlay ain=railroads bin=boundary_wake \ out=railroads_wake_clip \ atype=line btype=area \ operator=and

try operator=not
Vector feature overlay operations

Boolean operators

*GRASS GIS module:*

\[ v.\text{overlay} \]
Dissolving vector boundaries

Combination of several areas into one area based on common categories or attributes

*Dissolving common boundaries between the two interior areas:*
Exercise: Vector feature dissolving

Dissolving with categories

GRASS GIS module:

```
v.dissolve
```

Input: boundary_county
Output: nc_boundary

Commands:

```
v.category in=boundary_county type=centroid \ out=boundary_county_cat2 \ layer=2 cat=1 step=0 option=add
v.db.addtable map=boundary_county_cat2 layer=2
v.dissolve in=boundary_county_cat2 out=nc_boundary \ layer=2 column=cat
```
GRASS Vector data exchange

Import/export vector maps

```
v.in.* and v.out.*
v.out.ogr always exports the whole map
```

OGR supported formats: > 50
GRASS Vector data exchange

**Import of vector maps**

v.in.ogr module
v.import (it also offers reprojection on the fly)!

Always the **full** map is imported.

**Export of raster maps**

v.out.ogr module

Always the **full** map is exported.

OGR supported > 80 vector formats
GRASS Vector data exchange

Creating a map from Spreadsheet file (MS Excel file, OpenDocument ODS, CSV file):

A new vector point map can be directly created from a selected sheet in a spreadsheet:

```
the z coordinate is optional
v.in.db table=List1 x=long y=lat z=height \
 output=meteodata \
 driver=ogr datatabase=meteodata.xls
```

Note that in this example the key option is omitted (so the key column is then automatically added)
Example vector module groups

Topological geometry feature digitizing/editing

LiDAR analysis:
  http://grasswiki.osgeo.org/wiki/LIDAR

Linear referencing (LRS) – v.lrs.*:
  http://grasswiki.osgeo.org/wiki/Linear_Reference_System

Network analysis – v.net.*:
  http://grasswiki.osgeo.org/wiki/Vector_network_analysis